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SUMMARY

Multivariate calibration involves using an estimated relationship between a multivariate
response Y and an explanatery vector X to predict unknown X in future from further
observed responses. In controlled calibration with multivariate nermal errors, the profile
likelihood function for the unknown X (denoted £) displays a term which measures the
mutual inconsistency of the given response vector (denoted Z) in predicting £ This
inconsistency diagnostic fundamentally differentiates the behaviour of likelihood based and
Rayes “confidence” regions from those of the unconditional sampling approach. In addition
the diagnostic serves te pinpoint an inadequate response vector Z.
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1. INTRODUCTION

Muitivariate controlled calibration, as depicted in Brown (1982), takes training or calibrating
data Yi(q x 1) at fixed controlled values X,{(p x 1), i=1, ..., n to construct a relationship
between Y and X. This is to be used in future to estimate (“predict”) a new fixed but unknown
X (denoted by the p-vector £} corresponding to the observed g-vector Z, this letter being used
rather than ¥ to distinguish the prediction response from the ¥ of calibration.

The ¢ response variables represent cheap or quick measurements on the item. There are p
true characteristics of interest, X, which are expensive and laborious to measure. It is natural
to insist that g = p, and often one (p = 1) characteristic only is of interest. Even when more than
one (p > 1) characteristics are to be predicted, Brown (1982) suggests that it may yet be beneficial
to treat the characteristics one at a time, forgetting the existence of the other p—1
characteristics. Sundberg (1982, 1985} justifies this in some circumstances and investigates
conditions for asymptotic mean square error improvement. We retain for the most part general
p since even if the restriction to p = 1 characteristic were universally valid there would remain
passible polynomial dependence on that characteristic, implying p > 1 components of X. In
the polynomial case it is only necessary that the number of underlying regressor variables be
at most 4.

The assumed multivariate linear regression model for the #-sample calibrating data is

Y=1la'+XB+E, (1.1)

where Y(r % q), E(n x g), are random matrices, X(n x p) is a fixed matrix of constants, I is an
nx [ vector of ones and o{g x 1}, B(p x ¢q) are unknown parameters. The error matrix E is
such that with E={(g,, ..., &),

E(e}=0, Eg;s)) =T, E@e;g)) =0, i#j, i, j=1,...,n (1.2)
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These are additionally muiltivariate normal. The model for Z(g x 1) is
Z=a+B¢+¢ (1.3)

where g(g x 1) satisfies the same assumptions as ¢; of {1.2), is normal and is independent of E.

We note that Brown (1982) considers the maore general prediction problem in which > 1
observations Z are made at the same . This is a straightforward generalisation and for
notatienal simplicity is avoided here. In this connection using { > [ observations at a particular
£ is equivalent to a prediction error covariance matrix of I'/l. Any common scaling of the
covariance can be seen from general arguments or Brown (1982) to leave unaltered the standard
controlled calibration estimator of & see later £ as given by (3.1)). Thus cancern that prediction
errors may be on a different scale than those of calibration, as expressed by Rosenblatt and
Spiegelman (1981} in the standard univariate case, whilst legitimate, is relevant only to interval
estimates. In our multivariate formulation, however, there is no reason to suppose that
prediction errors, if different from calibration errors, should be confined to common scale
changes. From a less standard perspective emerging in this paper from the influence of an
inconsistency diagnostic on the profile likelihood, prediction replicates may be specially useful.

In Section 2 we abtain the profile likelihood for £ from data of model (1.1), (1.2) and (1.3).
The form of the maximum likelihood estimator is derived in Section 3 and likelihcod-based
confidence regions are discussed in Section 4. Section 5 gives an illustrative example from
Brown (1982).

2. THE PROFILE LIKELIHOOD

The unknown parameters of model {(1.111.3) are &, B, [" and &, where £ is the parameter
of interest and the others are nuisance parameters, whose removal is required for inference
about £, One method of elimination is by means of a prior distribution on the parameters
followed by integration out of the nuisance parameters in the posterior distribution. This
approach was used in Brown (1982, Section 3). As an alternative here, avoiding the need for
specification of a prior distribution, the profile or maximum relative likelihood (Kalbfleisch
and Sprott, 1970), is determined. The method entails forming the maximised likelihood as if
& were known and normalising by the likelihood maximised over all unknown parameters.
The profile likelihood is thus a function of £ which has 2 maximum vailue of one at a maximum
likelihood estimate of £,

We will suppose for notational simplicity that X and Y of (1.1} have been centred, post hoe
in the case of the observations Y, so that

Tx, =0, j=1,...,p; L¥;=0,j=1,...,q. (2.1)

It is assumed that the observations Z in (1.3) have post hoc been adjusted conformabiy.
When & is assumed known (1.1} and (1.3) have the same unknown parameters and they
may be put together to form

where Y, E,4 are (n + 1) x ¢ matrices, formed by augmenting ¥, E with Z, &, respectively. Also
Xo{(n+ 1) x p} is the X matrix augmented by £ and then centred by — 1£'/(n + 1) so that

o= o+ B'¢/n+1). (23)

Note that X, is a function of £, the parameter of interest. Now the maximised log-likelihood
for model (2.2} under multivariate normality, in accordance with (1.2}, is

3n+ Dlg{l + InQ2n)} —1n{ | (&) [}, (24)
with
O+ () = (Yo — 15 — XoBo)'(Yo — 10 — X By), (2.3)
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the ¢ x ¢ matrix of sum of products of error from a least squares fit, with the zero subscript
on B serving as a reminder that this estimate depends on the temporarily assumed known &,
Linear algebra enables (2.5) to be written as an explicit function of £ By introducing the
idempotent n x n matrix given as

I —Xo(X5X0) " X5
we may write the right hand side of {2.5) as
(Yo — 1Y) [ — X (X5 X o) " * XHYo — 1Y) (2.6)

Now from the facts,
(Yo — LYY (Yy— LY = Y'Y + 0ZZ'f(n + 1),
(YL— 1YY X, =YX +rZEn+ 1),
XoXo=X'X+néé'f(n+1),
and the standard binomial inverse theorem, see for example Press (1972, p. 23), (2.6) becames
Y'Y+nZZ'/n+ 1)

HY'X +nZfin+ )}GREE {n + 1)} — GTHIG{Y'X + nZE'fin + 1)}, 2.7
where
G=(X'X)"}, (2.8}
and
HE =1+ n'G{An + 1). (2.9}
We define the residual sum of products S(g x g} where
S=Y'Y-BX'Y (2.10)
and
[' = S/n, with ny=n—p —gq, (2.11)
and
B=GXx'Y, (2.12)

the maximum likelihood estimator of B from the calibration training data solely. After some
algebra (2.7} becomes

S+ [nf{(n + WONZ - B'ONZ - BEy).
This has been shown to be the right hand side of (2.5} and hence
[+ DI = [SI{1 + [/ {(n + DR NZ — B'eyS™ 4z - By} (2.13)
where we have used the determinantal identity,
[T+ AB| =|I+BA4|;

see for example Press (1972, p. 20). -
Equation (2.13) together with (2.4) determine the profile log-likelihood up to an additive
constant.

Remark 1. When there are I 2 1 replicates in the prediction it may be similarly seen that
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the profile likelihood is proportional to

a*(¢) (e 1)/2
{62(5) +(Z-BEysMZ - B*g}} (2.14)

with 67(&) = 1/l + [/n+ £'G¢ and the g x g matrix S, being formed by pooling the residual
sum of products from both calibration and prediction experiments. This results in ny =
n—p—q+1—1 degrees of freedom. The Bayes (integrated) likelihood eorresponding to a
Jeffrey’s invariant vague prior distribution, (3.5} of Brown {1982), is almost of the form (2.14):
the difference being that the powers of numerator and denominator of the Bayes posterior are
in, and ¥no + g) and not both 4(x + 1) as in the profile likelihood. The additional g/2 power
of the deneminator in the integrated likelihoad is crucial in determining whether the Bayes
posterior is integrable with only a uniform ‘vague’ prior distribution on &: for p=1, g2 2
suffices.

Remark 2. (2.13)determines the profile likelihood also in the case of polynomial dependence
of E(Y) on X, that is when components of & are related.

Remark 3. M T were known the profile likelihood would be proportional to the exponential
of —i(n+ )er{"11(&)}, thus resulting also in a dependence on [(£). On the other hand
B known and I" unknown results in a standard regression likelihood from Z, augmented by
information about [" from the calibration. J

Formula (2.14} leads directly to the general form of the profile likelihoad of & The value
of £ for which it achieves its maximum is the maximum likelihood estimatar. The generalised
likelihood ratio of £ or profile likelihood is (2.14} divided by the value of (2.14) at its maximum.

Values of ¢ for which this ratio is greater than some constant are likelihood—based
confidence regions of a size determined by the constant chosen.

3 MAXIMUM LIKELTHOOD ESTIMATION
31. Maximum Likelihood Estimates: General Linear Case
The classical estimator  of £ is, given the centring of (2.1),

E=H ‘Bl !Z, (3.1
where
H=BI"'R". (3.2)

This form is suggested by the maximum likelihood estimator with B, I’ known and these
replaced by the estimators B, [ given by (2.12), (2.11} or equivalently (2.10), We shall see
however that (3.1} is not generally the maximum likelihood estimator of & when g > p. The
maximum likelihood estimator minimises (2.13) and this is proportional to

m+ R+ & — 2| ) (3.3}
with
m=ng(n + 1)/n,
H given by (3.2), and with R, the prediction residual sum of products, given by
R=(Z-B¢..
Here | x |2 = x’'Ax, and in the sequel if A is omitted it is assumed to be the identity matrix.
The statistic R may be interpreted as an inconsistency diagnostic.

Remark. 1In the case of polynomial dependence of EY on X, as in Remark 2 of the previous
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sections, the natural generalisation of R is
R=Min(Z-B'&T-(Z2-B9,
£

the minimum squared distance from the prediction given by the calibration experiment, where
minimisation is over the restricted possible variation of £ 3

There exists a non-singular p x p matrix U which simultaneously diagonalises the symmetric
matrices H and aG/(n + 1), that is

UHU=1
nU'GUfn+1)= D = diagg), g,>...24,20.
Now R, H are O(1) whereas G in r({) given by (2.11) is O,{I/n) so that the g; are @ (1/n}. If

p=U", p=U, (3.4)
(3.3} becomes
m+ f(u, R} (3.5)
with
fl, RYy=(R+ | = | Y1+ [ 3). (3.6)

Special case, R=1.

In particular this is so for ¢ = p, when the inconsistency diagnostic R is identically zero.
When R = 0, (3.6} is a non-negative function of ¢ and is minimised by g = g Thus the maximum
likelihood estimator and the classical estimator, (3.1), coincide,

Typical case, R > 0.
When R > 0 we first suppose without loss of generality that

g=9,<g; i=1,....p—1.

It is easy to see that lim inf f{g, R})=1/g.

[4] = o

Equi-likelihood contours are given by f(u, R} =c > 0. It follows that, if the lower bound
of attainable values of ¢ is <l/g, a finite maximum likelihood estimate exists. The
equi-likelihood contours may be written,

R+ |p—pl*=cl +|plp)

or
lp=flG=c+ Il —R— |1, (3.7)
with,
A =diag(a),
a p x p diagonal matrix with jth diagonal elements
a;=1-—cg;, (3.8)

and the centre of the ellipsoid being
A=f)=A""p (3.9)
The right hand side of (3.7} is a strictly increasing function of ¢. For ¢ = l/g, we know that
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(3.7) has an unbounded solution. If ¢ is reduced from 1/g, the right hand side of (3.7) decreases
monotonically with decreasing ¢. The smallest value, zero, of the left hand side at g =i is
independent of ¢ and will therefore correspond to the smallest value of ¢ as determined by the
right hand side. It is achievable if f, # 0 since the right hand side ranges from oo down to
— R < 0 as cranges from 1/g to 0. Thus (3.7) has a minimising value ¢; of ¢ in the range (0, 1/g)
with u = y finite.

The above argument required fi, # @, which is true with probablllty one. If the whole vector

=0and R <1/g, then fi is zero and ¢, = R. If {1, =0 but i #0 a more complicated upper

bound on R ensues but R < 1/g is always sufficient.

In conctusion the maximum likelihood estimator of 4 exists in all but some very special
cases indicated in the above paragraph and is given as jt where

Bi=/01 —cpg))
Here, in general, ¢, and hence fi cannot be expressed explicitly.

This form of maximum likelihood estimator does not revert to form (3.1} if I is known. As
may be seen from Remark 3 at the end of section 2 the same form as above results with I’
replacing

It may be noted that, since ¢; < 1/g,

0<l—erg;<1,

so that i is an expansion of . When the calibration experiment is informative and accurate
the g; are small; for well bchavcd prediction R also will be smail and 2 and j will not differ by
much, In this case f(x, R) may be well approximated by its numerator as defined in (3.6).
Hawever, even with accurate calibration, a large value of R can shift the maximum likelihood
estimator considerably from [ and hence & of (3.1).

It should be observed that one is unlikely to want to use fi when R is significantly larger
than would be expected given that Z comes from the same model as the calibration data. For
tests of consistency, see Williams (1959, Ch. 9} and Naes (1983). For such a large R one might
question the validity of the observation. Various strategies are then passible, including
investigation of the individual error components and seeking further data.

One has to question whether in practical terms one would prefer the maximum likelihood
estimator to that of the simpler & of (3.1). The answer must be in some doubt since the former
offers an expansion of & rather than a shrinkage to zero favoured by any prior distribution
such that future £ are like past X, see Brown (1982, Section 3).

A further aspect of the maximum likelihood estimator for g > p is that it needs strictly to
be updated each time that a new £ is to be estimated from a corresponding Z. While that might
be technically sensible it does suggest considerable complications. A more useful type of
updating might be from the accumulation of information about the marginal distribution of
£, extending Williams (1969).

In the next subsection we examine in more detail the form of the profile likelihood in the
important case p= 1.

32, Maximum Likelihood Estimation when p= 1.
The profile likelihood is the —(n+ 1)/2 power of
{m+ flu, R)}/(m+ f(i, R} {3.10}

Thus the profile likelihood is a simple monotone transformation of f(y, R).
When there is just one explanatory variable {p = 1) with g dependent variabies,

Sl Ry= (R + (e~} + gu®)
Furthermore note that, in this case, H given by (3.2) and G given by (2.8) are scalars and
hence g in the expression for f(x, R} above is {nin + 1)}G/H.
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For the rest of this section we exclude the case ji = 0, which is easily dealt with separately:
In this special case f has the minimum at g =0 and supremum I/g if R < 1/g, maximum R
at g =0 and infimum /g if R > 1/g.

Consider f(y, R) =c. For each fixed ¢ (3.7) 15 a quadratic in g, with 0, 1 or 2 roots. The
case of a single root corresponds to a maximum or a minimum of f and occurs when the
constant on the right of (3.7) is zero, that is when

e={1+g(" + Ry £ J[{1 + g(i* + R)}* — 4gR1}/(29). (311}

For the sequel we denote these two c-values by ¢, and ¢y, ¢, < ¢y. The corresponding values
of u are

to =l —cug) = RA1—crg), (3.12)

where from now on we let /i denote the particular value 2 (¢}, the maximum likelihood
estlmator of p. For reasons of Symmetry we may assume ft > 0 without loss of generality.
Then fi is to the right of jt since & is an expansion of ji. Furthermore, f(x, R)— I[g as p— + o0,
from below at + oo, from above at — oo, From (3.11), (3.12) it follows that jiu, = —1/g so
that /i and p, have opposite signs and consequently, from (3.12),

ey lg=>c.

Since the right hand side of (3.7) is an increasing function of ¢ and a decreasing function of
R, it follows that the root ¢, is monotonically increasing as a function of R. Hence i is strictly
increasing from f to oo as R goes from O to infinity. For large R,

¢ = (1/g)1 — i*/R) + O(1/R?)

and correspondingly
2= R/ft+ O(1).
For small R,
c =R/ + gi®) + O(R?)

and at the same time

=+ gRAL + git*) + O(R?).
Also from (3.11) it follows that ¢;¢; = R/g, and for large R

cy= R+ ji2 + O(1/R). (3.13)

Figs la-1d give plots of f(u, R) with i=1, g=0.1, and R =0, 4, 7, 20 respectively. The
values of f at g= 400 is 1/g = 10 and it may be noted that the minimum value of f increases
from O for R=0when fi=ji=1 to 9.156 at R = 20 when ji = 11.844. The maximum value of
f, which corresponds to the least likely estimate, increases from 11.0at R =0to 21.8 at R =20,
with at the same time u, increasing from — 100 to —0.38. The dotted horizontal lines give
confidence regions described in the next section.

4. LIKELIHOOD-BASED CONFIDENCE REGIONS
Minus twice the log-likelihood ratio test statistic is, from (3.10),

W) = ( + 1){h(1, R) — KB, R)}
with

h{g; Ry = In{m + (i, R)}.
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Fig. 1. Plats of f{g, R), with maximum likelihcad estimates (ML) and tikelihood-based regions indicated, for p = 1,
l/g=10,u=1and (a) R=0,(h) R=4;(c) R=7;({d) R =20.

A likelihood-based confidence region for 1 is given by

{m W<k}, k>0, (4.1)
ot equivalently
{1: flu, RY< *(RY}, (4.2
where
H*RY= " Ym + f(f, R)) —m=a+ be, (4.3)

with ¢ >0, b > 1.

The standard asymptotic resuit takes k=k, ,, the upper y point of the chi-squared
distribution on p degrees of freedom, to yield an approximate (1 — ) 100 percent confidence
level. However, usual asymptotic theory required for the limiting chi-squared distribution relies
on increasing information about £ through repetitions, whereas here only # in the training
data may be considered large and predictive information about ¢ remains imprecise even
when nis large. Consequently a special argument is needed to justify the standard distributional
assumption. For p = g this is provided by letting n — o0 in the following Remark, and for
p=1,4q =1 arestricted justificaton by small I' asymptotics is given at the end of the section.

Remark. When p =g an exact likelihood ratio test readily obtains. In this case R is
identically zero and (3.10) becomes 1+ f(u, 0)/m, where f(u, 0)=|& —Z|3/1&), whose
distribution after division by the scalar p(n + 1)/n is an F distribution on p and n, degrees of
freedom, from (2.8) of Brown (1982). Harding (1986) pointed this out when p=g=1.
Interestingly, this gives a direct interpretation in terms of the profile likelihood of the
pathological unbounded behaviour of classical confidence intervals, as described by Hoadley
(1970). When p =g =1 a structural solution has been given by Kalotay (1971).

Let us look at the confidence region (4.2) more closely when p =1 and (say) ji > 0. If the
explicit dependence of ¢* on R is dropped, for a bounded interval it is necessary and sufficient
that c* < 1/g and this will be aided by R small and » and y large. The right hand side of 3.7
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equated to zero, with ¢* replacing ¢, has two roots in g, namely puq > g, the +values of
[+ J{A" = (L —ge*) R+ 2 — *P AL — ge*). 44)
To investigate the behaviour of g, u; withincreasing R, we first note that g, yi; are solutions of
(g, R) — h(fi, R) = copst.
Since the constant is independent of R, taking the derivative with respect to R gives
o O RY dp b, R) bR, R) dp _ Oh(h, R)
~ du dR BR 8 dR dR
and, since 8h(fi, R)/3fi =0 we get,
du Bh(fi, R) hi{y, R)| [dh(y, R)
dR | 4R R P

with g = py, 41, Now ;> i > 0 and from the form of h as depicted in the previous section,
ahfduy = 0. Also

Sh{y, R)
dR

For u = y, this is strictly less than 842, R)/OR since i minimises k and 1 + gu? is an increasing
function of yu. Thus dy,/dR >0 and the upper confidence limit is strictly increasing as a
function of R,

Monotonicity with R does not apply to the lower limit however, and it is necessary to take
a different approach to investigate the overall behaviour of the confidence region. Now from
(4.3), c* =a+ be, with b>1 and a > 0. The length of the interval is from (4.4)

2J{E — (1 — ge*)R + i — c*)} L — ge). (4.5)

As seen from (4.5) the length tends to «o like 24/(1 — gc*) when R increases in such a way
that ¢* = ¢¥(R) - 1/g from below. Thus the length increases rapidly with R for such large R.
This appears to result from a rapid increase in g, with R and a rather slow movement of g,
in the region of zero, where ¢, increases monotonically with R, Now ¢* > 1/g implies that the
confidence region will be unbounded, being typically doubly infinite with a centrally-excluded
set of values, where by (3.13) ¢ 1s of order R. For R =0, 4, 7, 20 in Figs la-1d the horizontal
dotted lines are at level ¢* when p=1, g=4, n =350, y =0.05 in addition to i=1, g =0.1.
For R larger than about 8 in this case ¢* > 1/g and the intervals are unbounded. The intervals
are respectively: (—0.98, 4.10), (—1.02, 8.51), (—0.85, 71.58), (— o0, —8.4}u (2.6, + w0}.

The dependence of this region on R is reassuring. It mimics the behaviour of the likelihood
function as well as the Bayes approach, see Brown (1982), with non-informative prior
distributions, although Bayes credibility intervals do not display the above discontinuous
behaviour for ¢* > 1/g. It corrects what might be interpreted as a fault in the joint sampling
approach as reported in Theorem 1 of Brown (1982). The point is amplified in that author’s
reply to the discussion of Mr Aitchison and Professor Barnard. Perversely, in that case
decreasing R expands the confidence region and increasing R shrinks it such that a very
self-inconsistent observation can imply a point confidence interval for ¢! Oman and Wax
{1984) have witnessed the undesirable practical effect of this. Wood (1982) has suggested basing
confidence procedures on the distribution of

1E-¢ik (4.6)

but this goes to the extretne of ignoring the effect of R completely. It has sampling properties
developed by Fujikoshi and Nishii (1984). Oman (1985} has proposed an alternative confidence
procedure, based on the best invariant region when B is known. A modification of (4.6} is

= {h(u, RYL+gu’)} .
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obtained by exchanging ¢ for & This results in intervals more close to the likelihood-based
regions (4.1), cf. (49) below. Finally, note that by Remark 3 of section 2, likelihood based
confidence intervals will display similar behaviour even when I' is known. Thus intuition that
large R just suggests large I is faulty.

Since, as earlier mentioned, standard asymptotics do not apply to the likelihood region
(4.1), we give here a brief discussion of small I" asymptotics which may be used to justify the
limiting chi-squared on p degrees of freedom in the important special case p = 1, g4 = 1. First we

may note that as I" tends to a zero matrix &, 2 tend in probability to & {regarded as fixed). A
Taylor series expansion of W(x) about the maximum likelihood estimator fi, in terms of the
¢ parameterisation and neglecting higher order terms, is

W x4 + 1) ") — & fom + ) @7
where
@ ={R+h(E—-E} /(1 +e?)
with e = nG/(n + 1) = O(1/n). Furthermore since h =0 ,(I'" 1 we obtain
B 2041 + €22
g, &= RA1 + e&%)
and hence (4.7) further approximates to

W) & {R(1 + e22)}[(n + D/ {m + RAL + e} 1(E— 8 (4.8)
Now R = 0,(1) so that provided n = ny(n + 1)/n is large then (4.8) becomes
Wi hiE — &) (49)

Finally, £ — & = 0,(I") and /(& — &) is asymptotically N{0, 1} distributed. It follows that the
log-likelihood ratio test statistic has the limiting chi-squared distribution on one degree of
freedom. Consequently the corresponding (1 —)100 per cent confidence region is asymp-
totically given by {4.1) with k =k, ,. However, note the following restrictions.

{(a) In order to conclude that the asymptotic chi-squared distribution is a good approximation
for fixed values of n, m and [, m large and I' small | ¢| must not be too large. Hence,
confidence regions derived from (exact) likelihood ratio tests and the likelihood-based
regions {(3.14} have been shown to agree well only when they result in bounded, reasonably
narrow intervals.

(b} We have used (4.7) and subsequent approximations to find an approximate distribution
of W, not an approximation of the outcome of W for atypical values of R (or of any other
stochastic component of W).

Both these restrictions imply that we cannot conclude from (4.9) anything about the behavour
as R— oo of the confidence regions corresponding to likelihood ratio tests. This is of little
consequence though, because a large R indicates inconsistency of Z and should lead to separate
treatment as commented at the end of Section 3.1. Also, they clearly do provide intervals
expanding with increasng R for moderate values of R, unlike those of (4.6).

One operationally useful alternative to likelihood-based confidence regions should be
mentioned, namely, Bayes credibility intervals which, as in Brown (1982, Section 3), incorporate
pricr information about £. From a Bayesian perspective such prior information might be seen
as essential given that the likelihood as described above does not tend to zero even at infinity.
Copas {1982) emphasises the need for a prior for £

In view of (a) and (b) and ignoring the fact that R is not exactly ancillary it may nevertheless
be inferentially more appropriate to look at the sampling properties of the maximum likelihood
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estimator conditional on the observed value of R. Such an approach may be seen to
approximate more closely the wholly conditional Bayes approach of Brown (1982).

5. AN EXAMPLE

To compare the profile likelihood and likelihood-based confidence intervals with the classical
and Bayes intervals of Brown (1982} we reuse the paints data of that paper. The same subset
of 27 observations was used for calibration. Considering only viscosity, for which linearity is
appropriate, prediction is based on responses ¥, and Y. A linear model was fitted with viscosity
coded at levels —1, 0, 1. The least squares estimates are

& ={(1.7478, 37.9363)'
B=(—0.1278, —1.6922)

P 6.86285 0.03052
“10.03052 002299

where § is the error sum of products from the linear model.

We give predictions at Z values of (a) (1.68, 38.64), (b) (1.86, 35.70) and (c} (1.94, 34.09).
Observation (a) is in fact one of the prediction set, observation 18 of the original 36 observations
and corresponds to a true X-value coded as zero. Observations (b) and (c} are constructed to
be increasingly contradictory in their prediction of X. Both regression coefficients are negative
and, for example, 1.94 is the highest ¥, value in the whole original set of 36 observations
whilst 34.09 is the smallest Y, value. Thus, the former predicts a low value of X whilst the latter
a high value of X. In combination they both conspire to predict a neutral value (near zero} but
with a large discrepancy diagnostic (R = 13.14). The discrepancy statistics for (a) and (b) are
R =083 and R = 4.46 respectively. Comparing with a chi-squared on one degree of freedom
we see that (a} is quite typical, (b) is significant at the 5% level and (¢} is significant at the 0.1
per cent level !

These three Z values give logarithms of (2.14) as plotted in Fig. 2(a) (b) and (c). The small
I' asymptotics’ critical value is k; 4 o5 = 3.84 for a 95% confidence interval. This encompasses
all values of £ sich that the graphs are above 3.84/2 = 1.92 below their maximum. The intervals,
marked by solid horizontal lines in Fig. 2, are thus

(2) (—0.76, 1.12); (b) (— 1.08, 0.97); (c) (—1.34, 1.16),

Notice how the length increases as R increases from (a) to (c). The maximum likelihood
estimates are close to the generalised least squares estimates (a) 0.17, (b) —0.04, (¢) —0.07
with the only perceptible difference being for case () where & = —0.085.

The likelihood-based confidence intervals may be compared with the classical intervals
given by (2.8) of Brown (1982). They are (a) (—1.02, 1.04); (b) (—0.82, 0.72); (¢) empty set.
Notice here how the intervals actually get shorter with increasing discrepancy R as one moves
from (a) to (c). In fact, in case (c) all values of the left hand side of (2.8) are greater than 0.28,
the value of the right hand side, so the interval has vanished completely! These effects
corroborate the effect of R on confidence intervals as discussed in section 4 and demonstrated
in Fig. 1.

6. CONCLUSION

We have examined the profile likelihood for controlled multivariate calibration, and in
particular maximum likelihood estimation and likelihood-based confidence intervals.

The maximum likelihood estimator is typically close to the traditional estimator but will
move some way from this if an inconsistency diagnostic is large. The paper has provided
likelihood-based confidence regions together with small I” asymptotics to specify the critical
constant of a region of specified size. :
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Fig. 2. Paint data: Logarithm of (2.14) for Z ={a) (1.68, 38.64) (b) (1.86, 35.70) and (¢} (1.94, 34.09).

In addition, likelihood-based confidence regions have been shown to possess the intuitively
desirable property of expansion with increasing values of the inconsistency diagnostic.
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